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Abstract: This paper studies some fractional integrals based on Jumarie type of Riemann Liouville (R-L) fractional 

calculus. The main method used in this article is the change of variables for fractional calculus. A new 

multiplication of fractional analytic functions plays an important role in this paper. We give some examples to 

illustrate how to evaluate the fractional integrals. And these results we obtained are natural generalizations of the 

results in classical calculus.  
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I.   INTRODUCTION 

Fractional calculus originated in 1695, nearly at the same time as conventional calculus. However, in spite of the 

contributions of important mathematicians, physicists and engineers, fractional calculus still attracted limited attention 

and remained a pure mathematical exercise. Fractional calculus had a rapid development during the last few decades, both 

in mathematics and in the applied sciences. Now it is recognized as an excellent tool to describe complex systems, 

phenomena involving long range memory effects and non-locality. A large number of research papers and books devoted 

to this subject have been published. At present, the popularity of fractional calculus has attracted many researchers all 

over the world, and has been widely used in physics, engineering, biology, medicine, economy and finance [1-8]. 

In this article, based on Jumarie’s modification of R-L fractional calculus, we mainly use the change of variables for 

fractional calculus to solve some fractional integrals. A new multiplication of fractional analytic functions plays an 

important role in this paper. We provide several examples to illustrate how to evaluate the fractional integrals. In fact, the 

results we obtained are generalizations of those in traditional calculus. 

II.   PRELIMINARIES 

In the following, the fractional calculus used in this paper and some properties are introduced. 

Definition 2.1 ([9]): Let      , and    be a real number. The Jumarie′s modified Riemann-Liouville (R-L)  -

fractional derivative is defined by 
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And the Jumarie type of R-L  -fractional integral is defined by 
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where  ( ) is the gamma function.  

Proposition 2.2 ([10]):  Suppose that            are real numbers and        then 
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Next, we introduce the fractional analytic function. 

Definition 2.3 ([11]): Let     , and    be real numbers for all  ,    (   ), and      . If the function    [   ]  

  can be expressed as   ( 
 )  ∑

  

 (    )
(    )

   
    , an  -fractional power series on some open interval containing 

  , then we say that   ( 
 ) is  -fractional analytic at   . Furthermore, if    [   ]    is continuous on closed interval 

[   ] and it is  -fractional analytic at every point in open interval (   ), then    is called an  -fractional analytic 

function on [   ]. 

In the following, a new multiplication of fractional analytic functions is introduced. 

Definition 2.4 ([12]): If      , and    is a real number. Let   ( 
 )  and    ( 

 )  be two  -fractional analytic 

functions defined on an interval containing    , 
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Equivalently, 
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Definition 2.5 ([13]): Let        and   ( 
 ),    ( 

 ) be two  -fractional analytic functions defined on an interval 

containing    , 
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The compositions of   ( 
 ) and   ( 

 ) are defined by 
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Definition 2.6 ([13]): Let        If   ( 
 ),   ( 

 ) are two  -fractional analytic functions at     satisfies 
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Then   ( 
 ),   ( 

 ) are called inverse functions of each other.    

Next, The followings are some fractional analytic functions. 

Definition 2.7([14]): If      , and   is a real number. The  -fractional exponential function is defined by 
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And the  -fractional logarithmic function    ( 
 ) is the inverse function of   ( 

 )  In addition, the  -fractional cosine 

and sine function are defined respectively as follows: 
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On the other hand, 
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is called the  -fractional secant function. 
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is the  -fractional cosecant function. 

                                                                                      ( 
 )      ( 

 )      ( 
 )                                                    (19) 

is the  -fractional tangent function. And 

                                                                                     ( 
 )      ( 

 )       ( 
 )                                                     (20) 

is the  -fractional cotangent function. 

In the following, inverse fractional trigonometric functions are introduced. 

Definition 2.8 [15]: Let        Then        ( 
 ) is the inverse function of     ( 

 ), and it is called inverse  -

fractional sine function.        ( 
 ) is the inverse function of     ( 

 ), and we say that it is the inverse  -fractional 

cosine function. On the other hand,        ( 
 ) is the inverse function of     ( 

 ), and it is called the inverse  -

fractional tangent function.          ( 
 ) is the inverse function of     ( 

 ), and we say that it is the inverse  -

fractional cotangent function.        ( 
 ) is the inverse function of     ( 

 ), and it is the inverse  -fractional secant 

function.        ( 
 ) is the inverse function of     ( 

 ), and is called the inverse  -fractional cosecant function.  

Definition 2.9 [16]: Let      , and   be a real number. The  -th power of the  -fractional analytic function   ( 
 ) 

is defined by  [  ( 
 )]     (     (   ( 

 ))). 

III.   TECHNIQUES AND EXAMPLES 

In this section, some methods used in this paper are introduced, and we provide several examples to illustrate how to 

evaluate some fractional integrals.  

Theorem 3.1 (change of variables for fractional calculus)[17]: If      ,   ( 
 ) is an  -fractional analytic function 

defined on an interval  , and   (  ( 
 )) is an  -fractional analytic function such that the range of     contained in the 

domain of    , then  
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for      . 

Theorem 3.2 [15]: Let               , and    be a real number. Then 
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Theorem 3.3 ([18]):  If         and   is a real number, then                   
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Example 3.4: If                ( (   ))
 

   Evaluate the  -fractional integral 
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by change of variables for fractional calculus, we obtain 
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Example 3.5: Let                 Find the  -fractional integral 
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Solution  Let (
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  , also using change of 

variables for fractional calculus, we have 
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Example 3.6: Suppose that               ( 
 )     and      Evaluate the  -fractional integral 
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Therefore, 
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IV.   CONCLUSION 

As mentioned above, based on Jumarie type of R-L fractional calculus and a new multiplication, this paper studies how to 

solve several fractional integrals. The main method we used is the change of variables for fractional calculus. In addition, 

the results obtained in this article are natural generalizations of those in traditional calculus. Furthermore, the new 

multiplication we defined is a natural operation of fractional analytic functions. In the future, we will use the new 

multiplication to solve some problems in fractional differential equations and applied mathematics.  
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